Solved

Find the Particular Solution of the Given Differential Equation That dydx=28x3y2\frac { d y } { d x } = 28 x ^ { 3 } y ^ { 2 }

Question 5

Multiple Choice

Find the particular solution of the given differential equation that satisfies the indicated condition: dydx=28x3y2\frac { d y } { d x } = 28 x ^ { 3 } y ^ { 2 } ; y = 6 when x = 1.


A) y=64342x4y = \frac { 6 } { 43 - 42 x ^ { 4 } }
B) y=643+42x4y = \frac { 6 } { 43 + 42 x ^ { 4 } }
C) y=643+42x4y = - \frac { 6 } { 43 + 42 x ^ { 4 } }
D) y=64342x3y = \frac { 6 } { 43 - 42 x ^ { 3 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions