Solved

Find the Particular Solution of the Given Differential Equation That dydx=y26x\frac { d y } { d x } = y ^ { 2 } \sqrt { 6 - x }

Question 17

Multiple Choice

Find the particular solution of the given differential equation that satisfies the indicated condition: dydx=y26x\frac { d y } { d x } = y ^ { 2 } \sqrt { 6 - x } ; y = 1 when x = 6.


A) y=2(6x) 3/233y = \frac { 2 ( 6 - x ) ^ { 3 / 2 } - 3 } { 3 }
B) y=32(6+x) 3/23y = \frac { 3 } { 2 ( 6 + x ) ^ { 3 / 2 } - 3 }
C) y=32(6x) 3/23y = \frac { 3 } { 2 ( 6 - x ) ^ { 3 / 2 } - 3 }
D) y=32(6x) 3/2+3y = \frac { 3 } { 2 ( 6 - x ) ^ { 3 / 2 } + 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions