Solved

Determine the Integral by Making an Appropriate Substitution sinθcos2θ1+cos3θ\int \frac { \sin \theta \cos ^ { 2 } \theta } { 1 + \cos ^ { 3 } \theta }

Question 86

Multiple Choice

Determine the integral by making an appropriate substitution.
- sinθcos2θ1+cos3θ\int \frac { \sin \theta \cos ^ { 2 } \theta } { 1 + \cos ^ { 3 } \theta }


A) 12\frac { 1 } { 2 } (1+cos3θ) 2\left( 1 + \cos ^ { 3 } \theta \right) ^ { 2 } + C
B) - 13\frac { 1 } { 3 } ln 1+cos3θ\left| 1 + \cos ^ { 3 } \theta \right| + C
C) 12\frac { 1 } { 2 } (sinθcos2θ) 2\left( \sin \theta \cos ^ { 2 } \theta \right) ^ { 2 } + C
D) sin2\sin ^ { 2 } θ cos2\cos ^ { 2 } θ + C
E) none of these

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions