Solved

The Linear Programming Problem Has an Unusual Characteristic (2019,4519)\left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)

Question 35

Multiple Choice

The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible) and where it occurs. ?
Objective function:
?
Z = 2.5x + y
?
Constraints:
?
X ? 0
Y ? 0
3x + 5y ? 15
?5x + 2y ? 10
?


A)  The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible) and where it occurs. ? Objective function: ? Z = 2.5x + y ? Constraints: ? X ? 0 Y ? 0 3x + 5y ? 15 ?5x + 2y ? 10 ? A)    Minimum at (0,0) : 0 B)    Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)   : 5.00 C) ?   Minimum at  \left( \frac { 20 } { 19 } , 0 \right)   : 2.63 D) ?   No minimum E) ?   Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)   : 6.97 Minimum at (0,0) : 0
B)  The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible) and where it occurs. ? Objective function: ? Z = 2.5x + y ? Constraints: ? X ? 0 Y ? 0 3x + 5y ? 15 ?5x + 2y ? 10 ? A)    Minimum at (0,0) : 0 B)    Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)   : 5.00 C) ?   Minimum at  \left( \frac { 20 } { 19 } , 0 \right)   : 2.63 D) ?   No minimum E) ?   Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)   : 6.97 Minimum at (2019,4519) \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right) : 5.00
C) ?  The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible) and where it occurs. ? Objective function: ? Z = 2.5x + y ? Constraints: ? X ? 0 Y ? 0 3x + 5y ? 15 ?5x + 2y ? 10 ? A)    Minimum at (0,0) : 0 B)    Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)   : 5.00 C) ?   Minimum at  \left( \frac { 20 } { 19 } , 0 \right)   : 2.63 D) ?   No minimum E) ?   Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)   : 6.97 Minimum at (2019,0) \left( \frac { 20 } { 19 } , 0 \right) : 2.63
D) ?  The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible) and where it occurs. ? Objective function: ? Z = 2.5x + y ? Constraints: ? X ? 0 Y ? 0 3x + 5y ? 15 ?5x + 2y ? 10 ? A)    Minimum at (0,0) : 0 B)    Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)   : 5.00 C) ?   Minimum at  \left( \frac { 20 } { 19 } , 0 \right)   : 2.63 D) ?   No minimum E) ?   Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)   : 6.97 No minimum
E) ?  The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible) and where it occurs. ? Objective function: ? Z = 2.5x + y ? Constraints: ? X ? 0 Y ? 0 3x + 5y ? 15 ?5x + 2y ? 10 ? A)    Minimum at (0,0) : 0 B)    Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)   : 5.00 C) ?   Minimum at  \left( \frac { 20 } { 19 } , 0 \right)   : 2.63 D) ?   No minimum E) ?   Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)   : 6.97 Minimum at (4519,2019) \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right) : 6.97

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions