Solved

Use the Formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )

Question 26

Multiple Choice

Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C) a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a) ,a=5,b=8,B=1C = \arctan ( b / a ) , a = 5 , b = 8 , B = 1 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C) y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta


A) 89\sqrt { 89 } sin(θ+1.0122) \sin ( \theta + 1.0122 )
B) 89\sqrt { 89 } sin(θ1.0122) \sin ( \theta - 1.0122 )
C) 89\sqrt { 89 } sin(2θ1.0122) \sin ( 2 \theta - 1.0122 )
D) 89\sqrt { 89 } sin(2θ+1.0122) \sin ( 2 \theta + 1.0122 )
E) sin(2θ+1.0122) \sin ( 2 \theta + 1.0122 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions