Solved

Use the Formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )

Question 24

Multiple Choice

Use the formula asinBθ+bcosBθ=a2+b2cos(BθC) a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b) ,a=13,b=6,B=3C = \arctan ( a / b ) , a = 13 , b = 6 , B = 3 to rewrite the trigonometric expression in the following form.​ y=a2+b2cos(BθC) y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta


A) 6 cos(3θ1.1384) \cos ( 3 \theta - 1.1384 )
B) 205\sqrt { 205 } cos(3θ+1.1384) \cos ( 3 \theta + 1.1384 )
C) 205\sqrt { 205 } cos(3θ1.1384) \cos ( 3 \theta - 1.1384 )
D) 13 cos(3θ+1.1384) \cos ( 3 \theta + 1.1384 )
E) 13 cos(3θ1.1384) \cos ( 3 \theta - 1.1384 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions