Solved

Use a Graphing Utility to Determine Which of the Trigonometric cscxsinxcotx\frac { \csc x - \sin x } { \cot x }

Question 12

Multiple Choice

Use a graphing utility to determine which of the trigonometric functions is equal to the following expression. cscxsinxcotx\frac { \csc x - \sin x } { \cot x }


A) ​ y = cos x
 Use a graphing utility to determine which of the trigonometric functions is equal to the following expression.  \frac { \csc x - \sin x } { \cot x }  A) ​ y = cos x   B) ​ y = sin x 2 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 2 C) ​ y = csc x   D) ​ y = cot x 4 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 E) ​ y = tan x
B) ​ y = sin x
2
- 2π  Use a graphing utility to determine which of the trigonometric functions is equal to the following expression.  \frac { \csc x - \sin x } { \cot x }  A) ​ y = cos x   B) ​ y = sin x 2 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 2 C) ​ y = csc x   D) ​ y = cot x 4 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 E) ​ y = tan x
Xscl =π2X _ { \text {scl } } = \frac { \pi } { 2 }
- 2
C) ​ y = csc x
 Use a graphing utility to determine which of the trigonometric functions is equal to the following expression.  \frac { \csc x - \sin x } { \cot x }  A) ​ y = cos x   B) ​ y = sin x 2 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 2 C) ​ y = csc x   D) ​ y = cot x 4 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 E) ​ y = tan x
D) ​ y = cot x
4
- 2π  Use a graphing utility to determine which of the trigonometric functions is equal to the following expression.  \frac { \csc x - \sin x } { \cot x }  A) ​ y = cos x   B) ​ y = sin x 2 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 2 C) ​ y = csc x   D) ​ y = cot x 4 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 E) ​ y = tan x
Xscl =π2X _ { \text {scl } } = \frac { \pi } { 2 }
- 4
E) ​ y = tan x
 Use a graphing utility to determine which of the trigonometric functions is equal to the following expression.  \frac { \csc x - \sin x } { \cot x }  A) ​ y = cos x   B) ​ y = sin x 2 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 2 C) ​ y = csc x   D) ​ y = cot x 4 - 2π   2π  X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 E) ​ y = tan x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions