Solved

Construct an Appropriate Triangle to Complete the Table (0θ90,0θπ2)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right)

Question 11

Multiple Choice

Construct an appropriate triangle to complete the table. (0θ90,0θπ2) \left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right) Function  Function θ( deg ) θ( rad )  Function Value sin45\begin{array} { | c | c | l | l | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \sin & 45 ^ { \circ } & & \\\hline\end{array}


A) ?  Function θ(deg) θ(rad)  Function Value sin45π422\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \sin & 45 & \frac { \pi } { 4 } & \frac { \sqrt { 2 } } { 2 } \\\\\hline\end{array}
B) ?  Function θ( deg ) θ( rad )  Function Value sin45π332\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \sin & 45 & \frac { \pi } { 3 } & \frac { \sqrt { 3 } } { 2 } \\\\\hline\end{array}
C) ?  Function θ(deg) θ(rad)  Function Value sin4500\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \sin & 45 & 0 & 0 \\\hline\end{array}
D) ?  Function θ(deg) θ( rad )  Function Value sin45π21\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \sin & 45 & \frac { \pi } { 2 } & 1\end{array}
E) ?  Function θ(deg) θ(rad)  Function Value sin45π612\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \sin & 45 & \frac { \pi } { 6 } & \frac { 1 } { 2 } \\\hline\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions