Solved

Construct an Appropriate Triangle to Complete the Table (0θ90,0θπ2)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right)

Question 16

Multiple Choice

Construct an appropriate triangle to complete the table. (0θ90,0θπ2) \left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right)  Function θ(deg) θ(rad)  Function Value cotπ2\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cot & & \frac { \pi } { 2 } & \\\hline\end{array}
?


A) ?  Function θ( deg ) θ(rad)  Function Value cot30π23\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cot & 30 ^ { \circ } & \frac { \pi } { 2 } & \sqrt { 3 } \\\hline\end{array}
B) ?  Function θ(deg) θ(rad)  Function Value cot45π21\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cot & 45 ^ { \circ } & \frac { \pi } { 2 } & 1 \\\hline\end{array}
C) ?  Function θ(deg) θ(rad)  Function Value  cot 90π20\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \text { cot } & 90 ^ { \circ } & \frac { \pi } { 2 } & 0 \\\hline\end{array}
D) ?  Function θ(deg) θ(rad)  Function Value cot0π2 Not defined \begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cot & 0 ^ { \circ } & \frac { \pi } { 2 } & \text { Not defined } \\\hline\end{array}
E) ?  Function θ(deg) θ(rad)  Function Value cot60π233\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \\\cot & 60 ^ { \circ } & \frac { \pi } { 2 } & \frac { \sqrt { 3 } } { 3 } \\\\\hline\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions