Solved

Evaluate (If Possible)the Sine,cosine,and Tangent of the Real Number t=7πt = - 7 \pi

Question 42

Multiple Choice

Evaluate (if possible) the sine,cosine,and tangent of the real number.​ t=7πt = - 7 \pi


A) t=7πt = - 7 \pi corresponds to the point (x,y) =(0,1) ( x , y ) = ( 0 , - 1 ) . sin(7π) =1cos(7π) =0tan(7π)  is undefined.\begin{array} { l } \sin ( - 7 \pi ) = - 1 \\\cos ( - 7 \pi ) = 0\\\tan ( - 7 \pi ) ~is~ undefined.\end{array}
B) t=7πt = - 7 \pi corresponds to the point (x,y) =(1,0) ( x , y ) = ( - 1,0 ) . sin(7π) =1cos(7π) =0tan(7π)  is undefined.\begin{array} { l } \sin ( - 7 \pi ) = - 1 \\\cos ( - 7 \pi ) = 0\\\tan ( - 7 \pi) ~is~ undefined.\end{array}
C) t=7πt = - 7 \pi corresponds to the point (x,y) =(0,1) ( x , y ) = ( 0 , - 1 ) . sin(7π) =0cos(7π) =0tan(7π)  is undefined.\begin{array} { l } \sin ( - 7 \pi ) = 0 \\\cos ( - 7 \pi ) = 0\\\tan ( - 7 \pi ) ~is~ undefined.\end{array}
D) t=7πt = - 7 \pi corresponds to the point (x,y) =(1,0) ( x , y ) = ( - 1,0 ) . sin(7π) =0cos(7π) =1tan(7π) =0\begin{array} { l } \sin ( - 7 \pi ) = 0 \\\cos ( - 7 \pi ) = - 1 \\\tan ( - 7 \pi ) = 0\end{array}
E) Not possible

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions