Solved

Solve the Inequality and Graph the Solution on the Real x2+x12x0\frac { x ^ { 2 } + x - 12 } { x } \geq 0

Question 16

Multiple Choice

Solve the inequality and graph the solution on the real number line.​ x2+x12x0\frac { x ^ { 2 } + x - 12 } { x } \geq 0


A) [4,0) [3,) [ - 4,0 ) \cap [ 3 , \infty )  Solve the inequality and graph the solution on the real number line.​  \frac { x ^ { 2 } + x - 12 } { x } \geq 0  ​ A)   [ - 4,0 )  \cap [ 3 , \infty )     B)   [ 4,0 )  \cup [ 3 , \infty )     C)   [ 4,0 )  \cup [ - 3 , \infty )     D)   [ - 4,0 )  \cap [ - 3 , \infty )     E)   [ - 4,0 )  \cup [ 3 , \infty )
B) [4,0) [3,) [ 4,0 ) \cup [ 3 , \infty )  Solve the inequality and graph the solution on the real number line.​  \frac { x ^ { 2 } + x - 12 } { x } \geq 0  ​ A)   [ - 4,0 )  \cap [ 3 , \infty )     B)   [ 4,0 )  \cup [ 3 , \infty )     C)   [ 4,0 )  \cup [ - 3 , \infty )     D)   [ - 4,0 )  \cap [ - 3 , \infty )     E)   [ - 4,0 )  \cup [ 3 , \infty )
C) [4,0) [3,) [ 4,0 ) \cup [ - 3 , \infty )  Solve the inequality and graph the solution on the real number line.​  \frac { x ^ { 2 } + x - 12 } { x } \geq 0  ​ A)   [ - 4,0 )  \cap [ 3 , \infty )     B)   [ 4,0 )  \cup [ 3 , \infty )     C)   [ 4,0 )  \cup [ - 3 , \infty )     D)   [ - 4,0 )  \cap [ - 3 , \infty )     E)   [ - 4,0 )  \cup [ 3 , \infty )
D) [4,0) [3,) [ - 4,0 ) \cap [ - 3 , \infty )  Solve the inequality and graph the solution on the real number line.​  \frac { x ^ { 2 } + x - 12 } { x } \geq 0  ​ A)   [ - 4,0 )  \cap [ 3 , \infty )     B)   [ 4,0 )  \cup [ 3 , \infty )     C)   [ 4,0 )  \cup [ - 3 , \infty )     D)   [ - 4,0 )  \cap [ - 3 , \infty )     E)   [ - 4,0 )  \cup [ 3 , \infty )
E) [4,0) [3,) [ - 4,0 ) \cup [ 3 , \infty )  Solve the inequality and graph the solution on the real number line.​  \frac { x ^ { 2 } + x - 12 } { x } \geq 0  ​ A)   [ - 4,0 )  \cap [ 3 , \infty )     B)   [ 4,0 )  \cup [ 3 , \infty )     C)   [ 4,0 )  \cup [ - 3 , \infty )     D)   [ - 4,0 )  \cap [ - 3 , \infty )     E)   [ - 4,0 )  \cup [ 3 , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions