Solved

Find the Interval(s)for B Such That the Following Equation Has 4x2+bx+13=04 x ^ { 2 } + b x + 13 = 0

Question 11

Multiple Choice

Find the interval(s) for b such that the following equation has at least one real solution and write a conjecture about the interval(s) based on the values of the coefficients​ 4x2+bx+13=04 x ^ { 2 } + b x + 13 = 0 . ​


A) (,252][252,) ( - \infty , - 2 \sqrt { 52 } ] \cup [ 2 \sqrt { 52 } , \infty ) If a>0a > 0 and c>0c > 0 , b2acb \leq - 2 \sqrt { a c } or b2acb \geq 2 \sqrt { a c }
B) (,252][252,) ( - \infty , - 2 \sqrt { 52 } ] \cup [ - 2 \sqrt { 52 } , \infty ) If a>0a > 0 and c<0c < 0 , b2acb \leq - 2 \sqrt { a c } or b2acb \geq 2 \sqrt { a c }
C) (,252][252,) ( - \infty , 2 \sqrt { 52 } ] \cup [ 2 \sqrt { 52 } , \infty ) If a>0a > 0 and c>0c > 0 , b2ac- b \leq - 2 \sqrt { a c } or b2acb \leq 2 \sqrt { a c }
D) (,252][252,) ( - \infty , 2 \sqrt { 52 } ] \cap [ 2 \sqrt { 52 } , \infty ) If a<0a < 0 and c>0c > 0 , b2acb \leq - 2 \sqrt { a c } or b2acb \geq 2 \sqrt { a c }
E) (,252][252,) ( - \infty , - 2 \sqrt { 52 } ] \cap [ 2 \sqrt { 52 } , \infty ) If a<0a < 0 and c<0c < 0 , b2acb \leq 2 \sqrt { a c } or b2acb \geq 2 \sqrt { a c }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions