Solved

Use the Given Value of K to Complete the Table y=kx2y = \frac { k } { x ^ { 2 } }

Question 30

Multiple Choice

Use the given value of k to complete the table for the inverse variation model​ y=kx2y = \frac { k } { x ^ { 2 } } Plot the points on a rectangular coordinate system. x246810y=kx2k=2\begin{array}{l}\begin{array} { | c | c | c | c | c | c | } \hline x & 2 & 4 & 6 & 8 & 10 \\\hline y = \frac { k } { x ^ { 2 } } & & & & & \\\hline\end{array}\\k = 2\end{array}


A) ​ x246810y=kx21218118132150\begin{array} { | c | c | c | c | c | c | } \hline x & 2 & 4 & 6 & 8 & 10 \\\hline y = \frac { k } { x ^ { 2 } }& \frac { 1 } { 2 } & \frac { 1 } { 8 } & \frac { 1 } { 18 } & \frac { 1 } { 32 } & \frac { 1 } { 50 } \\\hline\end{array}
 Use the given value of k to complete the table for the inverse variation model​  y = \frac { k } { x ^ { 2 } }  Plot the points on a rectangular coordinate system.  \begin{array}{l} \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ \hline \end{array}\\ k = 2 \end{array}  A) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline  y = \frac { k } { x ^ { 2 } }& \frac { 1 } { 2 } & \frac { 1 } { 8 } & \frac { 1 } { 18 } & \frac { 1 } { 32 } & \frac { 1 } { 50 } \\ \hline \end{array}  ​   B) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 1 } {2 }&\frac { 1 } {2 } &\frac { 1 } {2 } & \frac { 1 } {2 }&\frac { 1 } {2 } \\ \hline \end{array}  ​   C) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ & \frac { 1 } { 50 } & \frac { 1 } { 32 } & \frac { 1 } { 18 } & \frac { 1 } { 8 } & \frac { 1 } { 2 } \\\\ \hline \end{array}   ​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = k x ^ { 2 } & & & & & \\ & \frac { 1 } { 2 } & \frac { 1 } { 8 } & \frac { 1 } { 18 } & \frac { 1 } { 8 } & \frac { 1 } { 2 } \\\\ \hline \end{array}  ​   ​ E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } &2 & 4& 6& 8&10 \\ \hline \end{array}  ​
B) ​ x246810y=kx21212121212\begin{array} { | c | c | c | c | c | c | } \hline x & 2 & 4 & 6 & 8 & 10 \\\hline y = \frac { k } { x ^ { 2 } } & \frac { 1 } {2 }&\frac { 1 } {2 } &\frac { 1 } {2 } & \frac { 1 } {2 }&\frac { 1 } {2 } \\\hline\end{array}
 Use the given value of k to complete the table for the inverse variation model​  y = \frac { k } { x ^ { 2 } }  Plot the points on a rectangular coordinate system.  \begin{array}{l} \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ \hline \end{array}\\ k = 2 \end{array}  A) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline  y = \frac { k } { x ^ { 2 } }& \frac { 1 } { 2 } & \frac { 1 } { 8 } & \frac { 1 } { 18 } & \frac { 1 } { 32 } & \frac { 1 } { 50 } \\ \hline \end{array}  ​   B) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 1 } {2 }&\frac { 1 } {2 } &\frac { 1 } {2 } & \frac { 1 } {2 }&\frac { 1 } {2 } \\ \hline \end{array}  ​   C) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ & \frac { 1 } { 50 } & \frac { 1 } { 32 } & \frac { 1 } { 18 } & \frac { 1 } { 8 } & \frac { 1 } { 2 } \\\\ \hline \end{array}   ​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = k x ^ { 2 } & & & & & \\ & \frac { 1 } { 2 } & \frac { 1 } { 8 } & \frac { 1 } { 18 } & \frac { 1 } { 8 } & \frac { 1 } { 2 } \\\\ \hline \end{array}  ​   ​ E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } &2 & 4& 6& 8&10 \\ \hline \end{array}  ​
C) ​ x246810y=kx21501321181812\begin{array} { | c | c | c | c | c | c | } \hline x & 2 & 4 & 6 & 8 & 10 \\\hline y = \frac { k } { x ^ { 2 } } & & & & & \\& \frac { 1 } { 50 } & \frac { 1 } { 32 } & \frac { 1 } { 18 } & \frac { 1 } { 8 } & \frac { 1 } { 2 } \\\\\hline\end{array}

 Use the given value of k to complete the table for the inverse variation model​  y = \frac { k } { x ^ { 2 } }  Plot the points on a rectangular coordinate system.  \begin{array}{l} \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ \hline \end{array}\\ k = 2 \end{array}  A) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline  y = \frac { k } { x ^ { 2 } }& \frac { 1 } { 2 } & \frac { 1 } { 8 } & \frac { 1 } { 18 } & \frac { 1 } { 32 } & \frac { 1 } { 50 } \\ \hline \end{array}  ​   B) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 1 } {2 }&\frac { 1 } {2 } &\frac { 1 } {2 } & \frac { 1 } {2 }&\frac { 1 } {2 } \\ \hline \end{array}  ​   C) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ & \frac { 1 } { 50 } & \frac { 1 } { 32 } & \frac { 1 } { 18 } & \frac { 1 } { 8 } & \frac { 1 } { 2 } \\\\ \hline \end{array}   ​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = k x ^ { 2 } & & & & & \\ & \frac { 1 } { 2 } & \frac { 1 } { 8 } & \frac { 1 } { 18 } & \frac { 1 } { 8 } & \frac { 1 } { 2 } \\\\ \hline \end{array}  ​   ​ E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } &2 & 4& 6& 8&10 \\ \hline \end{array}  ​

D) ​ x246810y=kx212181181812\begin{array} { | c | c | c | c | c | c | } \hline x & 2 & 4 & 6 & 8 & 10 \\\hline y = k x ^ { 2 } & & & & & \\& \frac { 1 } { 2 } & \frac { 1 } { 8 } & \frac { 1 } { 18 } & \frac { 1 } { 8 } & \frac { 1 } { 2 } \\\\\hline\end{array}
 Use the given value of k to complete the table for the inverse variation model​  y = \frac { k } { x ^ { 2 } }  Plot the points on a rectangular coordinate system.  \begin{array}{l} \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ \hline \end{array}\\ k = 2 \end{array}  A) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline  y = \frac { k } { x ^ { 2 } }& \frac { 1 } { 2 } & \frac { 1 } { 8 } & \frac { 1 } { 18 } & \frac { 1 } { 32 } & \frac { 1 } { 50 } \\ \hline \end{array}  ​   B) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 1 } {2 }&\frac { 1 } {2 } &\frac { 1 } {2 } & \frac { 1 } {2 }&\frac { 1 } {2 } \\ \hline \end{array}  ​   C) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ & \frac { 1 } { 50 } & \frac { 1 } { 32 } & \frac { 1 } { 18 } & \frac { 1 } { 8 } & \frac { 1 } { 2 } \\\\ \hline \end{array}   ​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = k x ^ { 2 } & & & & & \\ & \frac { 1 } { 2 } & \frac { 1 } { 8 } & \frac { 1 } { 18 } & \frac { 1 } { 8 } & \frac { 1 } { 2 } \\\\ \hline \end{array}  ​   ​ E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } &2 & 4& 6& 8&10 \\ \hline \end{array}  ​
E) ​ x246810y=kx2246810\begin{array} { | c | c | c | c | c | c | } \hline x & 2 & 4 & 6 & 8 & 10 \\\hline y = \frac { k } { x ^ { 2 } } &2 & 4& 6& 8&10 \\\hline\end{array}
 Use the given value of k to complete the table for the inverse variation model​  y = \frac { k } { x ^ { 2 } }  Plot the points on a rectangular coordinate system.  \begin{array}{l} \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ \hline \end{array}\\ k = 2 \end{array}  A) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline  y = \frac { k } { x ^ { 2 } }& \frac { 1 } { 2 } & \frac { 1 } { 8 } & \frac { 1 } { 18 } & \frac { 1 } { 32 } & \frac { 1 } { 50 } \\ \hline \end{array}  ​   B) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 1 } {2 }&\frac { 1 } {2 } &\frac { 1 } {2 } & \frac { 1 } {2 }&\frac { 1 } {2 } \\ \hline \end{array}  ​   C) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ & \frac { 1 } { 50 } & \frac { 1 } { 32 } & \frac { 1 } { 18 } & \frac { 1 } { 8 } & \frac { 1 } { 2 } \\\\ \hline \end{array}   ​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = k x ^ { 2 } & & & & & \\ & \frac { 1 } { 2 } & \frac { 1 } { 8 } & \frac { 1 } { 18 } & \frac { 1 } { 8 } & \frac { 1 } { 2 } \\\\ \hline \end{array}  ​   ​ E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 2 & 4 & 6 & 8 & 10 \\ \hline y = \frac { k } { x ^ { 2 } } &2 & 4& 6& 8&10 \\ \hline \end{array}  ​

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions