Solved

Use the Given Value of K to Complete the Table y=kx2y = \frac { k } { x ^ { 2 } }

Question 43

Multiple Choice

Use the given value of k to complete the table for the inverse variation model​ y=kx2y = \frac { k } { x ^ { 2 } } . Plot the points on a rectangular coordinate system.
x810121416y=kx2\begin{array}{|l|l|l|l|l|l|}\hline x & 8 & 10 & 12 & 14 & 16 \\\hline y=\frac{k}{x^{2}}\\\hline\end{array}
k=20k = 20


A) ​​ x810121416y=kx251615536549564\begin{array} { | c | c | c | c | c | c | } \hline x & 8 & 10 & 12 & 14 & 16 \\\hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 16 } & \frac { 1 } { 5 } & \frac { 5 } { 36 } & \frac { 5 } { 49 } & \frac { 5 } { 64 } \\\hline\end{array}
 Use the given value of k to complete the table for the inverse variation model​  y = \frac { k } { x ^ { 2 } }  . Plot the points on a rectangular coordinate system.  \begin{array}{|l|l|l|l|l|l|} \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y=\frac{k}{x^{2}}\\ \hline \end{array}   k = 20  A) ​​ \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 16 } & \frac { 1 } { 5 } & \frac { 5 } { 36 } & \frac { 5 } { 49 } & \frac { 5 } { 64 } \\ \hline \end{array}    B) ​ \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } \\ \hline \end{array}  ​   ​ C) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 64 } & \frac { 5 } { 49 } & \frac { 5 } { 36 } & \frac { 1 } { 5 } & \frac { 5 } { 16 } \\ \hline \end{array}  ​​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & \frac { 5 } { 16 } & \frac { 1 } { 5 } & \frac { 5 } { 36 } & \frac { 1 } { 5 } & \frac { 5 } { 16 } \\ \hline \end{array}  ​   E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & 8 & 10 & 12 & 14 & 16 \\ \hline \end{array}  ​
B) ​ x810121416y=kx2516516516516516\begin{array} { | c | c | c | c | c | c | } \hline x & 8 & 10 & 12 & 14 & 16 \\\hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } \\\hline\end{array}
 Use the given value of k to complete the table for the inverse variation model​  y = \frac { k } { x ^ { 2 } }  . Plot the points on a rectangular coordinate system.  \begin{array}{|l|l|l|l|l|l|} \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y=\frac{k}{x^{2}}\\ \hline \end{array}   k = 20  A) ​​ \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 16 } & \frac { 1 } { 5 } & \frac { 5 } { 36 } & \frac { 5 } { 49 } & \frac { 5 } { 64 } \\ \hline \end{array}    B) ​ \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } \\ \hline \end{array}  ​   ​ C) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 64 } & \frac { 5 } { 49 } & \frac { 5 } { 36 } & \frac { 1 } { 5 } & \frac { 5 } { 16 } \\ \hline \end{array}  ​​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & \frac { 5 } { 16 } & \frac { 1 } { 5 } & \frac { 5 } { 36 } & \frac { 1 } { 5 } & \frac { 5 } { 16 } \\ \hline \end{array}  ​   E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & 8 & 10 & 12 & 14 & 16 \\ \hline \end{array}  ​

C) ​ x810121416y=kx256454953615516\begin{array} { | c | c | c | c | c | c | } \hline x & 8 & 10 & 12 & 14 & 16 \\\hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 64 } & \frac { 5 } { 49 } & \frac { 5 } { 36 } & \frac { 1 } { 5 } & \frac { 5 } { 16 } \\\hline\end{array}
​​  Use the given value of k to complete the table for the inverse variation model​  y = \frac { k } { x ^ { 2 } }  . Plot the points on a rectangular coordinate system.  \begin{array}{|l|l|l|l|l|l|} \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y=\frac{k}{x^{2}}\\ \hline \end{array}   k = 20  A) ​​ \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 16 } & \frac { 1 } { 5 } & \frac { 5 } { 36 } & \frac { 5 } { 49 } & \frac { 5 } { 64 } \\ \hline \end{array}    B) ​ \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } \\ \hline \end{array}  ​   ​ C) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 64 } & \frac { 5 } { 49 } & \frac { 5 } { 36 } & \frac { 1 } { 5 } & \frac { 5 } { 16 } \\ \hline \end{array}  ​​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & \frac { 5 } { 16 } & \frac { 1 } { 5 } & \frac { 5 } { 36 } & \frac { 1 } { 5 } & \frac { 5 } { 16 } \\ \hline \end{array}  ​   E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & 8 & 10 & 12 & 14 & 16 \\ \hline \end{array}  ​

D) ​ x810121416y=kx25161553615516\begin{array} { | c | c | c | c | c | c | } \hline x & 8 & 10 & 12 & 14 & 16 \\\hline y = k x ^ { 2 } & \frac { 5 } { 16 } & \frac { 1 } { 5 } & \frac { 5 } { 36 } & \frac { 1 } { 5 } & \frac { 5 } { 16 } \\\hline\end{array}
 Use the given value of k to complete the table for the inverse variation model​  y = \frac { k } { x ^ { 2 } }  . Plot the points on a rectangular coordinate system.  \begin{array}{|l|l|l|l|l|l|} \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y=\frac{k}{x^{2}}\\ \hline \end{array}   k = 20  A) ​​ \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 16 } & \frac { 1 } { 5 } & \frac { 5 } { 36 } & \frac { 5 } { 49 } & \frac { 5 } { 64 } \\ \hline \end{array}    B) ​ \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } \\ \hline \end{array}  ​   ​ C) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 64 } & \frac { 5 } { 49 } & \frac { 5 } { 36 } & \frac { 1 } { 5 } & \frac { 5 } { 16 } \\ \hline \end{array}  ​​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & \frac { 5 } { 16 } & \frac { 1 } { 5 } & \frac { 5 } { 36 } & \frac { 1 } { 5 } & \frac { 5 } { 16 } \\ \hline \end{array}  ​   E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & 8 & 10 & 12 & 14 & 16 \\ \hline \end{array}  ​
E) ​ x810121416y=kx2810121416\begin{array} { | c | c | c | c | c | c | } \hline x & 8 & 10 & 12 & 14 & 16 \\\hline y = \frac { k } { x ^ { 2 } } & 8 & 10 & 12 & 14 & 16 \\\hline\end{array}
 Use the given value of k to complete the table for the inverse variation model​  y = \frac { k } { x ^ { 2 } }  . Plot the points on a rectangular coordinate system.  \begin{array}{|l|l|l|l|l|l|} \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y=\frac{k}{x^{2}}\\ \hline \end{array}   k = 20  A) ​​ \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 16 } & \frac { 1 } { 5 } & \frac { 5 } { 36 } & \frac { 5 } { 49 } & \frac { 5 } { 64 } \\ \hline \end{array}    B) ​ \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } & \frac { 5 } { 16 } \\ \hline \end{array}  ​   ​ C) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 64 } & \frac { 5 } { 49 } & \frac { 5 } { 36 } & \frac { 1 } { 5 } & \frac { 5 } { 16 } \\ \hline \end{array}  ​​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & \frac { 5 } { 16 } & \frac { 1 } { 5 } & \frac { 5 } { 36 } & \frac { 1 } { 5 } & \frac { 5 } { 16 } \\ \hline \end{array}  ​   E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & 8 & 10 & 12 & 14 & 16 \\ \hline \end{array}  ​

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions