Solved

Select the Graph of the Polar Equation Using Symmetry,zeros,maximum R-Values,and r=cos3θr = \cos 3 \theta

Question 28

Multiple Choice

Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=cos3θr = \cos 3 \theta


A) Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \cos 3 \theta  ​ A) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   B) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   C) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   D) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   E) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​
B) Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \cos 3 \theta  ​ A) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   B) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   C) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   D) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   E) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​
C) Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \cos 3 \theta  ​ A) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   B) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   C) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   D) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   E) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​
D) Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \cos 3 \theta  ​ A) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   B) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   C) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   D) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   E) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​
E) Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \cos 3 \theta  ​ A) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   B) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   C) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   D) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   E) Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi    r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions