Solved

Select the Correct Graph of the Polar Equation r=π4r = \frac { \pi } { 4 }

Question 7

Multiple Choice

Select the correct graph of the polar equation.Describe your viewing window.​ r=π4r = \frac { \pi } { 4 }


A) ​  Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { \pi } { 4 }  ​ A) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  B) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  C) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  D) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  E) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array} θmin=0θmax=2πθstep=π/24Xmin=2Xmax=2Xscl=0.5Ymin=2Ymax=2Yscl=0.5\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 2 \\X _ { \max } = 2 \\X _ { s c l } = 0.5 \\Y _ { \min } = - 2 \\Y _ { \max } = 2 \\Y _ { s c l } = 0.5\end{array}
B) ​  Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { \pi } { 4 }  ​ A) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  B) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  C) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  D) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  E) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array} θmin=0θmax=2πθstep=π/24Xmin=2Xmax=2Xscl=0.5Ymin=2Ymax=2Yscl=0.5\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 2 \\X _ { \max } = 2 \\X _ { s c l } = 0.5 \\Y _ { \min } = - 2 \\Y _ { \max } = 2 \\Y _ { s c l } = 0.5\end{array}
C) ​  Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { \pi } { 4 }  ​ A) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  B) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  C) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  D) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  E) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array} θmin=0θmax=2πθstep=π/24Xmin=2Xmax=2Xscl=0.5Ymin=2Ymax=2Yscl=0.5\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 2 \\X _ { \max } = 2 \\X _ { s c l } = 0.5 \\Y _ { \min } = - 2 \\Y _ { \max } = 2 \\Y _ { s c l } = 0.5\end{array}
D) ​  Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { \pi } { 4 }  ​ A) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  B) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  C) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  D) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  E) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array} θmin=0θmax=2πθstep=π/24Xmin=2Xmax=2Xscl=0.5Ymin=2Ymax=2Yscl=0.5\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 2 \\X _ { \max } = 2 \\X _ { s c l } = 0.5 \\Y _ { \min } = - 2 \\Y _ { \max } = 2 \\Y _ { s c l } = 0.5\end{array}
E) ​  Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { \pi } { 4 }  ​ A) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  B) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  C) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  D) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  E) ​    \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array} θmin=0θmax=2πθstep=π/24Xmin=2Xmax=2Xscl=0.5Ymin=2Ymax=2Yscl=0.5\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 2 \\X _ { \max } = 2 \\X _ { s c l } = 0.5 \\Y _ { \min } = - 2 \\Y _ { \max } = 2 \\Y _ { s c l } = 0.5\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions