Solved

Select the Graph of the Polar Equation Using Symmetry,zeros,maximum R-Values,and r=(1+sinθ)r = ( 1 + \sin \theta )

Question 3

Multiple Choice

Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=(1+sinθ) r = ( 1 + \sin \theta )


A) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}
 Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = ( 1 + \sin \theta )   ​ A) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​ ​   B) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​
B) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = ( 1 + \sin \theta )   ​ A) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​ ​   B) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​
C) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = ( 1 + \sin \theta )   ​ A) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​ ​   B) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​
D) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = ( 1 + \sin \theta )   ​ A) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​ ​   B) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​
E) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = ( 1 + \sin \theta )   ​ A) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​ ​   B) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​

Correct Answer:

verifed

Verified

Related Questions