Solved

Suppose K, L, and M Grow at Constant Rates Given gˉk\bar { g } _ { k }

Question 64

Multiple Choice

Suppose k, l, and m grow at constant rates given by gˉk\bar { g } _ { k }  Suppose k, l, and m grow at constant rates given by  \bar { g } _ { k }    And  \bar { g } _ { m }  What is the growth rate of y if  y = m k ^ { 1 / 3 } l ^ { 2 / 3 } ?  A)   g _ { y } = \bar { g } _ { m } + \bar { g } _ { k } + \bar { g } _ { t }  B)   g _ { y } = \bar { g } _ { m } \times ( 1 / 3 )  \bar { g } _ { k } \times ( 2 / 3 )  \bar { g } _ { l }  C)   g _ { y } = \bar { g } _ { m } + ( 1 / 3 )  \left( \bar { g } _ { k } + \bar { g } _ { t } \right)   D)   g _ { y } = \bar { g } _ { m } + ( 1 / 3 )  \bar { g } _ { k } + ( 2 / 3 )  \bar { g } _ { t }  E)   g _ { y } = \bar { g } _ { m } + \bar { g } _ { \ell } 1 / 3 + \bar { g } _ { t } 2 / 3 And gˉm\bar { g } _ { m }
What is the growth rate of y if y=mk1/3l2/3?y = m k ^ { 1 / 3 } l ^ { 2 / 3 } ?


A) gy=gˉm+gˉk+gˉtg _ { y } = \bar { g } _ { m } + \bar { g } _ { k } + \bar { g } _ { t }
B) gy=gˉm×(1/3) gˉk×(2/3) gˉlg _ { y } = \bar { g } _ { m } \times ( 1 / 3 ) \bar { g } _ { k } \times ( 2 / 3 ) \bar { g } _ { l }
C) gy=gˉm+(1/3) (gˉk+gˉt) g _ { y } = \bar { g } _ { m } + ( 1 / 3 ) \left( \bar { g } _ { k } + \bar { g } _ { t } \right)
D) gy=gˉm+(1/3) gˉk+(2/3) gˉtg _ { y } = \bar { g } _ { m } + ( 1 / 3 ) \bar { g } _ { k } + ( 2 / 3 ) \bar { g } _ { t }
E) gy=gˉm+gˉ1/3+gˉt2/3g _ { y } = \bar { g } _ { m } + \bar { g } _ { \ell } 1 / 3 + \bar { g } _ { t } 2 / 3

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions