Solved

Suppose K, L, and M Grow at Constant Rates Given gˉk\bar { g } _ { k }

Question 67

Multiple Choice

Suppose k, l, and m grow at constant rates given by gˉk\bar { g } _ { k }  Suppose k, l, and m grow at constant rates given by  \bar { g } _ { k }    And  \bar { g } _ { m }  What is the growth rate of y if  y = ( m k l )  ^ { 1 / 3 } ?  A)   g _ { y } = ( 1 / 3 )  \bar { g } _ { m } + ( 1 / 3 )  \bar { g } _ { k } + ( 1 / 3 )  \bar { g } _ { l }  B)   \bar { g } _ { y } = \frac { 1 } { 3 \left( \bar { g } _ { m } - \bar { g } _ { k } - \bar { g } _ { l } \right)  }  C)   \bar { g } _ { y } = 3 \left( \bar { g } _ { m } + \bar { g } _ { k } + \bar { g } _ { l } \right)   D)   \bar { g } _ { y } = \left( \bar { g } _ { m } ^ { \frac { 1 } { 3 } } + g _ { k } ^ { \frac { 1 } { 3 } } + g _ { l } ^ { \frac { 1 } { 3 } } \right)   E)   \bar { g } _ { y } = \frac { 2 } { 3 \left( \bar { g } _ { m } + \bar { g } _ { k } - \bar { g } _ { l } \right)  } And gˉm\bar { g } _ { m }
What is the growth rate of y if y=(mkl) 1/3?y = ( m k l ) ^ { 1 / 3 } ?


A) gy=(1/3) gˉm+(1/3) gˉk+(1/3) gˉlg _ { y } = ( 1 / 3 ) \bar { g } _ { m } + ( 1 / 3 ) \bar { g } _ { k } + ( 1 / 3 ) \bar { g } _ { l }
B) gˉy=13(gˉmgˉkgˉl) \bar { g } _ { y } = \frac { 1 } { 3 \left( \bar { g } _ { m } - \bar { g } _ { k } - \bar { g } _ { l } \right) }
C) gˉy=3(gˉm+gˉk+gˉl) \bar { g } _ { y } = 3 \left( \bar { g } _ { m } + \bar { g } _ { k } + \bar { g } _ { l } \right)
D) gˉy=(gˉm13+gk13+gl13) \bar { g } _ { y } = \left( \bar { g } _ { m } ^ { \frac { 1 } { 3 } } + g _ { k } ^ { \frac { 1 } { 3 } } + g _ { l } ^ { \frac { 1 } { 3 } } \right)
E) gˉy=23(gˉm+gˉkgˉl) \bar { g } _ { y } = \frac { 2 } { 3 \left( \bar { g } _ { m } + \bar { g } _ { k } - \bar { g } _ { l } \right) }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions