Solved

If We Define sˉ1\bar { s } _ { 1 }

Question 69

Multiple Choice

If we define sˉ1\bar { s } _ { 1 } and sˉ2\bar { s } _ { 2 }
As the saving rates in Countries 1 and 2, respectively, dˉ1=dˉ2\bar { d } _ { 1 } = \bar { d } _ { 2 }
As the depreciation rates in Countries 1 and 2, respectively, and   Aˉ1\bar { A } _ { 1 } And  
Aˉ2\bar { A } _ { 2 } As productivity in Countries 1 and 2, respectively, in the Solow model, the equation ________ predicts that ________ contribute the most to differences in steady-state output per worker.


A) y1y2=(Aˉ1Aˉ2) 3/2\frac { y _ { 1 } ^ { * } } { y _ { 2 } ^ { * } } = \left( \frac { \bar { A } _ { 1 } } { \bar { A } _ { 2 } } \right) ^ { 3 / 2 } ; productivity differences
B) y1y2=(Aˉ1Aˉ2) 3/2×(sˉ1sˉ2) 1/2\frac { y _ { 1 } ^ { * } } { y _ { 2 } ^ { * } } = \left( \frac { \bar { A } _ { 1 } } { \bar { A } _ { 2 } } \right) ^ { 3 / 2 } \times \left( \frac { \bar { s } _ { 1 } } { \bar { s } _ { 2 } } \right) ^ { 1 / 2 } ; saving rate differences
C) y1y2=(sˉ1sˉ2) 3/2×(Aˉ1Aˉ2) 1/2\frac { y _ { 1 } ^ { * } } { y _ { 2 } ^ { * } } = \left( \frac { \bar { s } _ { 1 } } { \bar { s } _ { 2 } } \right) ^ { 3 / 2 } \times \left( \frac { \bar { A } _ { 1 } } { \bar { A } _ { 2 } } \right) ^ { 1 / 2 } ; productivity differences
D) y1y2=(Aˉ1Aˉ2) 3/2×(sˉ1sˉ2) 1/2\frac { y _ { 1 } ^ { * } } { y _ { 2 } ^ { * } } = \left( \frac { \bar { A } _ { 1 } } { \bar { A } _ { 2 } } \right) ^ { 3 / 2 } \times \left( \frac { \bar { s } _ { 1 } } { \bar { s } _ { 2 } } \right) ^ { 1 / 2 } ; productivity differences
E) y1y2=(sˉ1sˉ2) 1/2\frac { y _ { 1 } ^ { * } } { y _ { 2 } ^ { * } } = \left( \frac { \bar { s } _ { 1 } } { \bar { s } _ { 2 } } \right) ^ { 1 / 2 } ; saving rate differences

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions