Solved

The Solution of the Eigenvalue Problem y+λy=0,y(0)=0,y(2)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ( 2 ) = 0

Question 16

Multiple Choice

The solution of the eigenvalue problem y+λy=0,y(0) =0,y(2) =0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ( 2 ) = 0 is


A) λ=nπ/2,y=cos(nπx/2) ,n=1,2,3,\lambda = n \pi / 2 , y = \cos ( n \pi x / 2 ) , n = 1,2,3 , \ldots
B) λ=(nπ/2) 2,y=cos(nπx/2) ,n=1,2,3,\lambda = ( n \pi / 2 ) ^ { 2 } , y = \cos ( n \pi x / 2 ) , n = 1,2,3 , \ldots
C) λ2=nπ/2,y=sin(nπx/2) ,n=1,2,3,\lambda ^ { 2 } = n \pi / 2 , y = \sin ( n \pi x / 2 ) , n = 1,2,3 , \ldots
D) λ=nπ/2,y=sin(nπx/2) ,n=1,2,3,\lambda = n \pi / 2 , y = \sin ( n \pi x / 2 ) , n = 1,2,3 , \ldots
E) λ=(nπ/2) 2,y=sin(nπx/2) ,n=1,2,3,\lambda = ( n \pi / 2 ) ^ { 2 } , y = \sin ( n \pi x / 2 ) , n = 1,2,3 , \ldots

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions