Solved

In the Previous Two Problems, the Infinite Series Solution For u

Question 14

Multiple Choice

In the previous two problems, the infinite series solution for u(r,θ) u ( r , \theta ) is u=n=1cnrnΘn(θ) u = \sum _ { n = 1 } ^ { \infty } c _ { n } r ^ { n } \Theta _ { n } ( \theta ) , where Θn\Theta _ { n } is found in the previous problem, and


A) cn=20πf(θ) sin(nθ) dθ/πc _ { n } = 2 \int _ { 0 } ^ { \pi } f ( \theta ) \sin ( n \theta ) d \theta / \pi
B) cn=20πf(θ) cos(nθ) dθ/πc _ { n } = 2 \int _ { 0 } ^ { \pi } f ( \theta ) \cos ( n \theta ) d \theta / \pi
C) cn=0πf(θ) cos(nθ) dθ/πc _ { n } = \int _ { 0 } ^ { \pi } f ( \theta ) \cos ( n \theta ) d \theta / \pi
D) cn=0πf(θ) sin(nθ) dθ/πc _ { n } = \int _ { 0 } ^ { \pi } f ( \theta ) \sin ( n \theta ) d \theta / \pi
E) cn=0πf(θ) sin(nθ) dθ/(2π) c _ { n } = \int _ { 0 } ^ { \pi } f ( \theta ) \sin ( n \theta ) d \theta / ( 2 \pi )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions