Solved

Consider the Boundary-Value Problem y4y+3y=x,y(0)=1,y(1)=2y ^ { \prime \prime } - 4 y ^ { \prime } + 3 y = x , y ( 0 ) = 1 , y ( 1 ) = 2

Question 11

Multiple Choice

Consider the boundary-value problem y4y+3y=x,y(0) =1,y(1) =2y ^ { \prime \prime } - 4 y ^ { \prime } + 3 y = x , y ( 0 ) = 1 , y ( 1 ) = 2 . Replace the derivatives with central differences with a step size of h=1/4h = 1 / 4 . The resulting equations are


A) 12yi+129yi24yi1=xi12 y _ { i + 1 } - 29 y _ { i } - 24 y _ { i - 1 } = x _ { i }
B) 12yi+1+17yi+12yi1=xi12 y _ { i + 1 } + 17 y _ { i } + 12 y _ { i - 1 } = x _ { i }
C) 8yi+1+17yi+12yi1=xi8 y _ { i + 1 } + 17 y _ { i } + 12 y _ { i - 1 } = x _ { i }
D) 8yi+129yi+24yi1=xi8 y _ { i + 1 } - 29 y _ { i } + 24 y _ { i - 1 } = x _ { i }
E) 8yi+1+29yi24yi1=xi8 y _ { i + 1 } + 29 y _ { i } - 24 y _ { i - 1 } = x _ { i }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions