Solved

Using the Convolution Theorem, We Find That L1{1/((s+1)(s2+1))}=\mathcal { L } ^ { - 1 } \left\{ 1 / \left( ( s + 1 ) \left( s ^ { 2 } + 1 \right) \right) \right\} =

Question 9

Multiple Choice

Using the convolution theorem, we find that L1{1/((s+1) (s2+1) ) }=\mathcal { L } ^ { - 1 } \left\{ 1 / \left( ( s + 1 ) \left( s ^ { 2 } + 1 \right) \right) \right\} =


A) (et+sintcost) /2\left( e ^ { - t } + \sin t - \cos t \right) / 2
B) (et+sintcost) /2\left( e ^ { t } + \sin t - \cos t \right) / 2
C) (et+sint+cost) /2\left( e ^ { - t } + \sin t + \cos t \right) / 2
D) (etsintcost) /2\left( e ^ { t } - \sin t - \cos t \right) / 2
E) (etsintcost) /2\left( e ^ { - t } - \sin t - \cos t \right) / 2

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions