Solved

Consider the Problem a Finite Difference Approximation of the Solution Is Desired

Question 14

Multiple Choice

Consider the problem 2ux2+2uy2=0,u(0,y) =0,u(x,0) =0,u(1,y) =sin(πy) ,u(x,1) =sin(πx) \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0 , u ( 0 , y ) = 0 , u ( x , 0 ) = 0 , u ( 1 , y ) = \sin ( \pi y ) , u ( x , 1 ) = \sin ( \pi x ) . A finite difference approximation of the solution is desired, using the approximation of the previous problem. Use a mesh size of h=1/3h = 1 / 3 The conditions satisfied by the mesh points on the boundary are Select all that apply.


A) u=1/2 at (1,2/3)  and (2/3,1) u = 1 / 2 \text { at } ( 1,2 / 3 ) \text { and } ( 2 / 3,1 )
B) u=3/2 at (1,1/3)  and (1/3,1) u = \sqrt { 3 } / 2 \text { at } ( 1,1 / 3 ) \text { and } ( 1 / 3,1 )
C) u=0 at (0,1/3)  and (1/3,0) u = 0 \text { at } ( 0,1 / 3 ) \text { and } ( 1 / 3,0 )
D) u=0 at (0,2/3)  and (2/3,0) u = 0 \text { at } ( 0,2 / 3 ) \text { and } ( 2 / 3,0 )
E) u=0 at (1/3,1/3)  and (2/3,2/3) u = 0 \text { at } ( 1 / 3,1 / 3 ) \text { and } ( 2 / 3,2 / 3 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions