Solved

In the Previous Four Problems, the Infinite Series Solution of the Original

Question 4

Multiple Choice

In the previous four problems, the infinite series solution of the original problem is (for certain values of the constants ana _ { n } and bnb _ { n } )


A) u=n=1anJ0(znr/2) cos(znt/2) u = \sum _ { n = 1 } ^ { \infty } a _ { n } J _ { 0 } \left( z _ { n } r / 2 \right) \cos \left( z _ { n } t / 2 \right)
B) u=n=1bnJ0(znr/2) sin(znt/2) u = \sum _ { n = 1 } ^ { \infty } b _ { n } J _ { 0 } \left( z _ { n } r / 2 \right) \sin \left( z _ { n } t / 2 \right)
C) u=n=1bnJ0(nπr) sin(nπt) u = \sum _ { n = 1 } ^ { \infty } b _ { n } J _ { 0 } ( n \pi r ) \sin ( n \pi t )
D) u=n=1anJ0(nπr) cos(nπt) u = \sum _ { n = 1 } ^ { \infty } a _ { n } J _ { 0 } ( n \pi r ) \cos ( n \pi t )
E) u=n1J0(znr/2) (ancos(nπt) +bnsin(nπt) ) u = \sum _ { n - 1 } ^ { \infty } J _ { 0 } \left( z _ { n } r / 2 \right) \left( a _ { n } \cos ( n \pi t ) + b _ { n } \sin ( n \pi t ) \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions