Solved

In the Problem , Separate Variables, Using u(r,θ)=R(r)Θ(θ)u ( r , \theta ) = R ( r ) \Theta ( \theta )

Question 11

Multiple Choice

In the problem 2ur2+2rur+1r22uθ2+cotθr2uθ=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 2 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } + \frac { \cot \theta } { r ^ { 2 } } \frac { \partial u } { \partial \theta } = 0 , separate variables, using u(r,θ) =R(r) Θ(θ) u ( r , \theta ) = R ( r ) \Theta ( \theta ) . The resulting problems for RR and Θ\Theta are


A) r2R+2rR+λR=0,R(0) r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } + \lambda R = 0 , R ( 0 ) is bounded; sin(θ) Θ+cos(θ) Θ+λsin(θ) Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
B) r2R+2rRλR=0,R(0) r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } - \lambda R = 0 , R ( 0 ) is bounded; sin(θ) Θ+cos(θ) Θ+λsin(θ) Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
C) r2R+2rRλR=0,R(0) r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } - \lambda R = 0 , R ( 0 ) is bounded; sin(θ) Θ+cos(θ) Θλsin(θ) Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } - \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
D) r2R2rRλR=0,R(0) r ^ { 2 } R ^ { \prime \prime } - 2 r R ^ { \prime } - \lambda R = 0 , R ( 0 ) is bounded; sin(θ) Θ+cos(θ) Θ+λsin(θ) Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
E) r2R+2rRλR=0,R(0) r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } - \lambda R = 0 , R ( 0 ) is bounded; sin(θ) Θcos(θ) Θ+λsin(θ) Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } - \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions