Solved

The Solution Of r2R+rR+λR=0,R(1)=0,R(2)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , R ( 1 ) = 0 , R ( 2 ) = 0

Question 16

Multiple Choice

The solution of r2R+rR+λR=0,R(1) =0,R(2) =0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , R ( 1 ) = 0 , R ( 2 ) = 0 is


A) λ=nπ/ln2,R=sin(nπlnr/ln2) \lambda = n \pi / \ln 2 , R = \sin ( n \pi \ln r / \ln 2 )
B) λ=(nπ/ln2) 2,R=sin(nπlnr/ln2) \lambda = ( n \pi / \ln 2 ) ^ { 2 } , R = \sin ( n \pi \ln r / \ln 2 )
C) λ=(nπ/ln2) 2,R=cos(nπlnr/ln2) \lambda = ( n \pi / \ln 2 ) ^ { 2 } , R = \cos ( n \pi \ln r / \ln 2 )
D) λ=nπ/ln2,R=cos(nπlnr/ln2) \lambda = n \pi / \ln 2 , R = \cos ( n \pi \ln r / \ln 2 )
E) none of the above

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions