Solved

In the Previous Three Problems, the Solution of the Original u(x,t)=n=1cnsin(nπx/L)e(nπ/L)2tu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t }

Question 1

Multiple Choice

In the previous three problems, the solution of the original problem is


A) u(x,t) =n=1cnsin(nπx/L) e(nπ/L) 2tu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t } , where cn=0Lf(x) cos(nπx/L) dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x
B) u(x,t) =n=1cncos(nπx/L) e(nπ/L) 2tu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \cos ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t } , where cn=0Lf(x) sin(nπx/L) dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \sin ( n \pi x / L ) d x
C) u(x,t) =n=1cnsin(nπx/L) e(nπ/L) 2tu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t } , where cn=20Lf(x) cos(nπx/L) dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / L
D) u(x,t) =n=1cnsin(nπx/L) e(nπ/L) 2tu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t } , where cn=20Lf(x) sin(nπx/L) dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( n \pi x / L ) d x / L
E) u(x,t) =n=0cncos(nπx/L) e(nπ/L) 2tu ( x , t ) = \sum _ { n = 0 } ^ { \infty } c _ { n } \cos ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t } , where cx=20Lf(x) cos(nπx/L) dxc _ { x } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x

Correct Answer:

verifed

Verified

Related Questions