Solved

The Fourier Series of the Function f(x)=xf ( x ) = x

Question 35

Multiple Choice

The Fourier series of the function f(x) =xf ( x ) = x on [1,1][ - 1,1 ] is


A) n=0(1) n2cos(nπx) /(nπ) \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } 2 \cos ( n \pi x ) / ( n \pi )
B) n=0(1) n+12cos(nπx) /(nπ) \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n + 1 } 2 \cos ( n \pi x ) / ( n \pi )
C) n1(1) n2sin(nπx) /(nπ) \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n } 2 \sin ( n \pi x ) / ( n \pi )
D) n1(1) n+12sin(nπx) /(nπ) \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n + 1 } 2 \sin ( n \pi x ) / ( n \pi )
E) n1(1) n+1sin(nπx) /(nπ) \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n + 1 } \sin ( n \pi x ) / ( n \pi )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions