Solved

Using the Eigenfunctions of the Previous Problem, Written As gn(x)g _ { n } ( x )

Question 32

Multiple Choice

Using the eigenfunctions of the previous problem, written as gn(x) g _ { n } ( x ) , the Fourier-Bessel series for the function f(x) f ( x ) is n=1cngn(x) \sum _ { n = 1 } ^ { \infty } c _ { n } g _ { n } ( x ) , where


A) cn=02f(x) gn(x) dx/02gn2(x) dxc _ { n } = \int _ { 0 } ^ { 2 } f ( x ) g _ { n } ( x ) d x / \int _ { 0 } ^ { 2 } g _ { n } ^ { 2 } ( x ) d x
B) cn=02xf(x) gn(x) dx/02gn2(x) dxc _ { n } = \int _ { 0 } ^ { 2 } x f ( x ) g _ { n } ( x ) d x / \int _ { 0 } ^ { 2 } g _ { n } ^ { 2 } ( x ) d x
C) cn=02f(x) gn(x) dx/02xgn2(x) dxc _ { n } = \int _ { 0 } ^ { 2 } f ( x ) g _ { n } ( x ) d x / \int _ { 0 } ^ { 2 } x g _ { n } ^ { 2 } ( x ) d x
D) cn=02xf(x) gn(x) dx/02xgn2(x) dxc _ { n } = \int _ { 0 } ^ { 2 } x f ( x ) g _ { n } ( x ) d x / \int _ { 0 } ^ { 2 } x g _ { n } ^ { 2 } ( x ) d x
E) cn=02x2f(x) gn(x) dx/02x2gn2(x) dxc _ { n } = \int _ { 0 } ^ { 2 } x ^ { 2 } f ( x ) g _ { n } ( x ) d x / \int _ { 0 } ^ { 2 } x ^ { 2 } g _ { n } ^ { 2 } ( x ) d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions