Solved

The Fourier Series of a Function ff Defined On [p,p][ - p , p ]

Question 19

Multiple Choice

The Fourier Series of a function ff defined on [p,p][ - p , p ] is f(x) =a0/2+n1(ancos(nπx/p) +bnsin(nπx/p) ) f ( x ) = a _ { 0 } / 2 + \sum _ { n - 1 } ^ { \infty } \left( a _ { n } \cos ( n \pi x / p ) + b _ { n } \sin ( n \pi x / p ) \right) where Select all that apply.


A) a0=ppf(x) dx/pa _ { 0 } = \int _ { -p } ^ { p } f ( x ) d x / p
B) an=ppf(x) cos(nπx/p) dx/pa _ { n } = \int _ { -p} ^ { p } f ( x ) \cos ( n \pi x / p ) d x / p
C) an=ppf(x) sin(nπx/p) dx/pa _ { n } = \int _ { - p } ^ { p } f ( x ) \sin ( n \pi x / p ) d x / p
D) bn=ppf(x) cos(nπx/p) dx/pb _ { n } = \int _ { - p } ^ { p } f ( x ) \cos ( n \pi x / p ) d x / p
E) bn=ppf(x) sin(nπx/p) dx/pb _ { n } = \int _ { - p } ^ { p } f ( x ) \sin ( n \pi x / p ) d x / p

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions