Solved

Consider the Parameterized Bessel's Differential Equation x2y+xy+(α2x2n2)y=0x ^ { 2 } y ^ { \prime \prime } + x y ^ { \prime } + \left( \alpha ^ { 2 } x ^ { 2 } - n ^ { 2 } \right) y = 0

Question 22

Multiple Choice

Consider the parameterized Bessel's differential equation x2y+xy+(α2x2n2) y=0x ^ { 2 } y ^ { \prime \prime } + x y ^ { \prime } + \left( \alpha ^ { 2 } x ^ { 2 } - n ^ { 2 } \right) y = 0 along with the conditions y(0) y ( 0 ) is bounded, y(2) =0y ( 2 ) = 0 . The solution of this eigenvalue problem is (Jn(zn) =0) \left( J _ { n } \left( z _ { n } \right) = 0 \right)


A) α=zn/2,y=Jn(znx/2) ,n=1,2,3,\alpha = z _ { n } / 2 , y = J _ { n } \left( z _ { n } x / 2 \right) , n = 1,2,3 , \ldots
B) α=zn2/4,y=Jn(znx/2) ,n=1,2,3,\alpha = z _ { n } ^ { 2 } / 4 , y = J _ { n } \left( z _ { n } x / 2 \right) , n = 1,2,3 , \ldots
C) α=zn,y=Jn(zn/2x) ,n=1,2,3,\alpha = z _ { n } , y = J _ { n } \left( \sqrt { z _ { n } / 2 } x \right) , n = 1,2,3 , \ldots
D) α=zn/2,y=Jn(zn/2x) ,n=1,2,3,\alpha = z _ { n } / 2 , y = J _ { n } \left( \sqrt { z _ { n } / 2 } x \right) , n = 1,2,3 , \ldots
E) α=zn2/4,y=Jn(zn/2x) ,n=1,2,3,\alpha = z _ { n } ^ { 2 } / 4 , y = J _ { n } \left( \sqrt { z _ { n } / 2 } x \right) , n = 1,2,3 , \ldots

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions