Solved

The Improved Euler's Formula for Solving y=f(x,y),y(xˉ)=yˉy ^ { \prime } = f ( x , y ) , y ( \bar { x } ) = \bar { y }

Question 16

Multiple Choice

The improved Euler's formula for solving y=f(x,y) ,y(xˉ) =yˉy ^ { \prime } = f ( x , y ) , y ( \bar { x } ) = \bar { y } is


A) yn+1=ynf(xn,yn) ,y0=yˉ,n=0,1,2,y _ { n + 1 } = y _ { n } - f \left( x _ { n } , y _ { n } \right) , y _ { 0 } = \bar { y } , n = 0,1,2 , \ldots
B) yn+1=ynhf(xn,yn) ,y0=yˉ,n=0,1,2,y _ { n + 1 } = y _ { n } - h f \left( x _ { n } , y _ { n } \right) , y _ { 0 } = \bar { y } , n = 0,1,2 , \ldots
C) yn+1=yn+hf(xn,yn) ,y0=yˉ,n=0,1,2,y _ { n + 1 } = y _ { n } + h f \left( x _ { n } , y _ { n } \right) , y _ { 0 } = \bar { y } , n = 0,1,2 , \ldots
D) yn+1=yn+(f(xn,yn) +f(xn+1,yn+1) /2) ,y0=yˉ,n=0,1,2, where yn+1y _ { n + 1 } = y _ { n } + \left( f \left( x _ { n } , y _ { n } \right) + f \left( x _ { n + 1 } , y _ { n + 1 } ^ { * } \right) / 2 \right) , y _ { 0 } = \bar { y } , n = 0,1,2 , \ldots \text { where } y _ { n + 1 } ^ { * }
is predicted from Euler's formula
E) yn+1=yn+h(f(xn,yn) +f(xn+1,yn+1) /2) ,y0=yˉ,n=0,1,2, where yn+1y _ { n + 1 } = y _ { n } + h \left( f \left( x _ { n } , y _ { n } \right) + f \left( x _ { n + 1 } , y _ { n + 1 } ^ { * } \right) / 2 \right) , y _ { 0 } = \bar { y } , n = 0,1,2 , \ldots \text { where } y _ { n + 1 } ^ { * }
is predicted from Euler's formula

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions