Solved

Using the Value Of yn+1y _ { n + 1 } ^ { * }

Question 18

Multiple Choice

Using the value of yn+1y _ { n + 1 } ^ { * } from the previous problem, the Adams-Moulton corrector value for the solution of yt=f(x,y) ,y(x0) =y0y ^ { t } = f ( x , y ) , y \left( x _ { 0 } \right) = y _ { 0 } is


A) yn+1=yn+h(9yn+119yn+5yn1+yn2) /24, where yn+1=f(xn+1,yn+1) y _ { n + 1 } = y _ { n } + h \left( 9 y _ { n + 1 } ^ { \prime } - 19 y _ { n } ^ { \prime } + 5 y _ { n - 1 } ^ { \prime } + y _ { n - 2 } ^ { \prime } \right) / 24 , \text { where } y _ { n + 1 } ^ { \prime } = f \left( x _ { n + 1 } , y _ { n + 1 } ^ { * } \right)
B) yn+1=yn+h(9yn+1+19yn+5yn1+yn2) /34, where yn+1=f(xn+1,yn+1) y _ { n + 1 } = y _ { n } + h \left( 9 y _ { n + 1 } ^ { \prime } + 19 y _ { n } ^ { \prime } + 5 y _ { n - 1 } ^ { \prime } + y _ { n - 2 } ^ { \prime } \right) / 34 , \text { where } y _ { n + 1 } ^ { \prime } = f \left( x _ { n + 1 } , y _ { n + 1 } ^ { * } \right)
C) yn+1=yn+h(9yn+1+19yn5yn1+yn2) /24, where yn+1=f(xn+1,yn+1) y _ { n + 1 } = y _ { n } + h \left( 9 y _ { n + 1 } ^ { \prime } + 19 y _ { n } ^ { \prime } - 5 y _ { n - 1 } ^ { \prime } + y _ { n - 2 } ^ { \prime } \right) / 24 , \text { where } y _ { n + 1 } ^ { \prime } = f \left( x _ { n + 1 } , y _ { n + 1 } ^ { * } \right)
D) yn+1=yn+h(9yn+1+19yn5yn1yn2) /24, where yn+1=f(xn+1,yn+1) y _ { n + 1 } = y _ { n } + h \left( 9 y _ { n + 1 } ^ { \prime } + 19 y _ { n } ^ { \prime } - 5 y _ { n - 1 } ^ { \prime } - y _ { n - 2 } ^ { \prime } \right) / 24 , \text { where } y _ { n + 1 } ^ { \prime } = f \left( x _ { n + 1 } , y _ { n + 1 } ^ { * } \right)
E) none of the above

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions