Solved

The Solution of the System X=(1324)X\mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 1 & - 3 \\2 & - 4\end{array} \right) \mathbf { X }

Question 40

Multiple Choice

The solution of the system X=(1324) X\mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 1 & - 3 \\2 & - 4\end{array} \right) \mathbf { X } is


A) X=c1(32) et+c2(11) e2t\mathbf { X } = c _ { 1 } \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { - 2 t }
B) X=c1(32) et+c2(11) e2t\mathbf { X } = c _ { 1 } \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { 2 t }
C) X=c1(23) et+c2(11) e2t\mathbf { X } = c _ { 1 } \left( \begin{array} { l } 2 \\3\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { - 2 t }
D) X=c1(23) et+c2(11) e2t\mathbf { X } = c _ { 1 } \left( \begin{array} { l } 2 \\3\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { 2 t }
E) none of the above

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions