Solved

The Solution of the System X=(3111)XX ^ { \prime } = \left( \begin{array} { c c } - 3 & - 1 \\1 & - 1\end{array} \right) X

Question 14

Multiple Choice

The solution of the system X=(3111) XX ^ { \prime } = \left( \begin{array} { c c } - 3 & - 1 \\1 & - 1\end{array} \right) X is


A) X=c1(11) e2t+c2[(11) te2t+(10) e2t]\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left[ \left( \begin{array} { c } - 1 \\1\end{array} \right) t e ^ { - 2 t } + \left( \begin{array} { l } 1 \\0\end{array} \right) e ^ { - 2 t } \right]
B) X=c1(11) e2t+c2(11) te2t+c3(10) e2t\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left( \begin{array} { c } - 1 \\1\end{array} \right) t e ^ { - 2 t } + c _ { 3 } \left( \begin{array} { l } 1 \\0\end{array} \right) e ^ { - 2 t }
C) X=c1(11) e2t+c2(11) te2tX = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) t e ^ { - 2 t }
D) X=c1(11) e2t+c2(12) etX = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left( \begin{array} { l } 1 \\2\end{array} \right) e ^ { - t }
E) none of the above

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions