Solved

When the Laplace Transform Is Applied to the Problem y+2y+y=e3t,y(0)=1,y(0)=2y ^ { \prime \prime } + 2 y ^ { \prime } + y = e ^ { 3 t } , y ( 0 ) = 1 , y ^ { \prime } ( 0 ) = 2

Question 2

Multiple Choice

When the Laplace transform is applied to the problem y+2y+y=e3t,y(0) =1,y(0) =2y ^ { \prime \prime } + 2 y ^ { \prime } + y = e ^ { 3 t } , y ( 0 ) = 1 , y ^ { \prime } ( 0 ) = 2 the resulting transformed equation is


A) (s2+2s+1) Y=s4+1/(s3) \left( s ^ { 2 } + 2 s + 1 \right) Y = - s - 4 + 1 / ( s - 3 )
B) (s2+2s+1) Y=s4+1/(s3) \left( s ^ { 2 } + 2 s + 1 \right) Y = s - 4 + 1 / ( s - 3 )
C) (s2+2s+1) Y=s+4+1/(s+3) \left( s ^ { 2 } + 2 s + 1 \right) Y = s + 4 + 1 / ( s + 3 )
D) (s2+2s+1) Y=s4+1/(s+3) \left( s ^ { 2 } + 2 s + 1 \right) Y = - s - 4 + 1 / ( s + 3 )
E) (s2+2s+1) Y=s+4+1/(s3) \left( s ^ { 2 } + 2 s + 1 \right) Y = s + 4 + 1 / ( s - 3 )

Correct Answer:

verifed

Verified

Related Questions