Solved

A Beam of Length LL Is Simply Supported at One End and Free at the End

Question 10

Multiple Choice

A beam of length LL is simply supported at one end and free at the other end. The weight density is constant, ω(x) =ω0\omega ( x ) = \omega _ { 0 } . Let y(x) y ( x ) represent the deflection at point xx . The correct form of the boundary value problem for this beam is


A) d2ydx2=ω0/EI,y(0) =0,y(L) =0\frac { d ^ { 2 } y } { d x ^ { 2 } } = \omega _ { 0 } / E I , y ( 0 ) = 0 , y ^ { \prime \prime \prime } ( L ) = 0
B) d4ydx4=ω0/EI,y(0) =0,y(0) =0,y(L) =0,y(L) =0\frac { d ^ { 4 } y } { d x ^ { 4 } } = \omega _ { 0 } / E I , y ( 0 ) = 0 , y ^ { \prime \prime } ( 0 ) = 0 , y ^ { \prime \prime } ( L ) = 0 , y ^ { \prime \prime \prime } ( L ) = 0
C) d2ydx2=ω0EI,y(0) =0,y(L) =0\frac { d ^ { 2 } y } { d x ^ { 2 } } = \omega _ { 0 } E I , y ( 0 ) = 0 , y ^ { \prime \prime \prime } ( L ) = 0
D) d4ydx4=ω0EI,y(0) =0,y(0) =0,y(L) =0,y(L) =0\frac { d ^ { 4 } y } { d x ^ { 4 } } = \omega _ { 0 } E I , y ( 0 ) = 0 , y ^ { \prime \prime } ( 0 ) = 0 , y ^ { \prime \prime } ( L ) = 0 , y ^ { \prime \prime \prime } ( L ) = 0
E) none of the above

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions