Solved

The Boundary Value Problem Td2ydx2+ρω2=0,y(0)=0,y(L)=0T \frac { d ^ { 2 } y } { d x ^ { 2 } } + \rho \omega ^ { 2 } = 0 , y ( 0 ) = 0 , y ( L ) = 0

Question 28

Multiple Choice

The boundary value problem Td2ydx2+ρω2=0,y(0) =0,y(L) =0T \frac { d ^ { 2 } y } { d x ^ { 2 } } + \rho \omega ^ { 2 } = 0 , y ( 0 ) = 0 , y ( L ) = 0 is a model of the shape of a rotating string. Suppose TT and ρ\rho are constants. The critical angular rotation speed ω=ωn\omega = \omega _ { n } , for which there exist non-trivial solutions are


A) ωn=(T/ρ) (nπL) 2\omega _ { n } = ( T / \rho ) \left( \frac { n \pi } { L } \right) ^ { 2 }
B) ωn=T/ρnπL\omega _ { n } = \sqrt { T / \rho } \frac { n \pi } { L }
C) ωn=T/ρnπ2L\omega _ { n } = \sqrt { T / \rho } \frac { n \pi } { 2 L }
D) ωn=(T/ρ) (nπ2L) 2\omega _ { n } = ( T / \rho ) \left( \frac { n \pi } { 2 L } \right) ^ { 2 }
E) ωn=ρ/TnπL\omega _ { n } = \sqrt { \rho / T } \frac { n \pi } { L }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions