Solved

A 10 Foot Chain of Weight Density 2 Pounds Per x(t)x ( t )

Question 32

Multiple Choice

A 10 foot chain of weight density 2 pounds per foot is coiled on the ground. One end is pulled upward by a force of 10 pounds. The correct differential equation for the height, x(t) x ( t ) , of the end of the chain above the ground at time tt is


A) xdxdtd2xdt2+dx2dt+32x=160x \frac { d x } { d t } \frac { d ^ { 2 } x } { d t ^ { 2 } } + \frac { d x ^ { 2 } } { d t } + 32 x = 160
B) dxdtd2xdt2+dx2dt+32x=160\frac { d x } { d t } \frac { d ^ { 2 } x } { d t ^ { 2 } } + \frac { d x ^ { 2 } } { d t } + 32 x = 160
C) xd2xdt2+dx2dt+32x=160x \frac { d ^ { 2 } x } { d t ^ { 2 } } + \frac { d x ^ { 2 } } { d t } + 32 x = 160
D) xdxdtd2xdt2+dxdt+32x=160x \frac { d x } { d t } \frac { d ^ { 2 } x } { d t ^ { 2 } } + \frac { d x } { d t } + 32 x = 160
E) xdxdtd2xdt2+dx2dt=160x \frac { d x } { d t } \frac { d ^ { 2 } x } { d t ^ { 2 } } + \frac { d x ^ { 2 } } { d t } = 160

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions