Solved

The Figure Shows a Pendulum with Length L and the Angle

Question 3

Multiple Choice

The figure shows a pendulum with length L and the angle θ\theta from the vertical to the pendulum. It can be shown that θ\theta , as a function of time, satisfies the nonlinear differential equation d2θdt2+gLsinθ=0\frac { d ^ { 2 } \theta } { d t ^ { 2 } } + \frac { g } { L } \sin \theta = 0 where g=9.8 m/s2g = 9.8 \mathrm {~m} / \mathrm { s } ^ { 2 }  is the acceleration due to gravity. For small values of \text { is the acceleration due to gravity. For small values of } θ\theta we can use the linear approximation sinθ=θ\sin \theta = \theta  and then the differential equation becomes linear. Find the equation \text { and then the differential equation becomes linear. Find the equation }  of motion of a pendulum with length 1 m if θ is initially 0.2rad and the initial \text { of motion of a pendulum with length } 1 \mathrm {~m} \text { if } \theta \text { is initially } 0.2 \mathrm { rad } \text { and the initial }  angular velocity is \text { angular velocity is } dθdt=1rad/s\frac { d \theta } { d t } = 1 \mathrm { rad } / \mathrm { s }  The figure shows a pendulum with length L and the angle  \theta  from the vertical to the pendulum. It can be shown that  \theta  , as a function of time, satisfies the nonlinear differential equation  \frac { d ^ { 2 } \theta } { d t ^ { 2 } } + \frac { g } { L } \sin \theta = 0  where  g = 9.8 \mathrm {~m} / \mathrm { s } ^ { 2 }   \text { is the acceleration due to gravity. For small values of }   \theta  we can use the linear approximation  \sin \theta = \theta   \text { and then the differential equation becomes linear. Find the equation }   \text { of motion of a pendulum with length } 1 \mathrm {~m} \text { if } \theta \text { is initially } 0.2 \mathrm { rad } \text { and the initial }   \text { angular velocity is }   \frac { d \theta } { d t } = 1 \mathrm { rad } / \mathrm { s }    A)   \theta ( t )  = 0.2 \cos ( \sqrt { 9.8 } t )  + \frac { 1 } { \sqrt { 9.8 } } \sin ( \sqrt { 9.8 } t )   B)   \theta ( t )  = 0.2 \cos ( \sqrt { 9.8 } t )  + 2 \sin ( \sqrt { 9.8 } t )   C)   \theta ( t )  = 2 \cos ( 9.8 t )  + \frac { 1 } { 9.8 } \sin ( 9.8 t )   D)   \theta ( t )  = \frac { 1 } { 9.8 } \cos ( \sqrt { 9.8 } t )  + 0.2 \sin ( \sqrt { 9.8 } t )   E)   \theta ( t )  = 0.2 \sin ( \sqrt { 9.8 } t )  + \frac { 1 } { \sqrt { 9.8 } } \cos ( \sqrt { 9.8 } t )


A) θ(t) =0.2cos(9.8t) +19.8sin(9.8t) \theta ( t ) = 0.2 \cos ( \sqrt { 9.8 } t ) + \frac { 1 } { \sqrt { 9.8 } } \sin ( \sqrt { 9.8 } t )
B) θ(t) =0.2cos(9.8t) +2sin(9.8t) \theta ( t ) = 0.2 \cos ( \sqrt { 9.8 } t ) + 2 \sin ( \sqrt { 9.8 } t )
C) θ(t) =2cos(9.8t) +19.8sin(9.8t) \theta ( t ) = 2 \cos ( 9.8 t ) + \frac { 1 } { 9.8 } \sin ( 9.8 t )
D) θ(t) =19.8cos(9.8t) +0.2sin(9.8t) \theta ( t ) = \frac { 1 } { 9.8 } \cos ( \sqrt { 9.8 } t ) + 0.2 \sin ( \sqrt { 9.8 } t )
E) θ(t) =0.2sin(9.8t) +19.8cos(9.8t) \theta ( t ) = 0.2 \sin ( \sqrt { 9.8 } t ) + \frac { 1 } { \sqrt { 9.8 } } \cos ( \sqrt { 9.8 } t )

Correct Answer:

verifed

Verified

Related Questions