Solved

Find the Correct Identity, If F Is a Scalar Field div(fF)=fdiv(F)+Ff\operatorname { div } ( f \mathbf { F } ) = f \operatorname { div } ( \mathbf { F } ) + \mathbf { F } \cdot \nabla f

Question 35

Multiple Choice

Find the correct identity, if f is a scalar field, F and G are vector fields.


A) div(fF) =fdiv(F) +Ff\operatorname { div } ( f \mathbf { F } ) = f \operatorname { div } ( \mathbf { F } ) + \mathbf { F } \cdot \nabla f
B) curl(fF) =fdiv(F) +Ff\operatorname { curl } ( f \mathbf { F } ) = f \operatorname { div } ( \mathbf { F } ) + \mathbf { F } \cdot \nabla f
C) div(fF) =fcurl(F) +(f) ×F\operatorname { div } ( f \mathbf { F } ) = f \operatorname { curl } ( \mathbf { F } ) + ( \nabla f ) \times \mathbf { F }
D) None of these

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions