Solved

Find the Jacobian of the Transformation x=6αsinβ,y=5αcosβx = 6 \alpha \sin \beta , y = 5 \alpha \cos \beta

Question 98

Multiple Choice

Find the Jacobian of the transformation. x=6αsinβ,y=5αcosβx = 6 \alpha \sin \beta , y = 5 \alpha \cos \beta


A) (x,y) (α,β) =30α\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = - 30 \alpha
B) (x,y) (α,β) =20αsinβcosβ\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = - 20 \alpha \sin \beta \cos \beta
C) (x,y) (α,β) =9α\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = 9 \alpha
D) (x,y) (α,β) =α\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = - \alpha
E) (x,y) (α,β) =36α\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = 36 \alpha

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions