Solved

Find the Area of the Part of Hyperbolic Paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 }

Question 102

Multiple Choice

Find the area of the part of hyperbolic paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 } that lies between the cylinders x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 .


A) (828235) π( 82 \sqrt { 82 } - 3 \sqrt { 5 } ) \pi
B) (8282+55) π( 82 \sqrt { 82 } + 5 \sqrt { 5 } ) \pi
C) 29\frac { 2 } { 9 } (828255) ( 82 \sqrt { 82 } - 5 \sqrt { 5 } )
D) 29\frac { 2 } { 9 } (828235) π( 82 \sqrt { 82 } - 3 \sqrt { 5 } ) \pi
E) 29\frac { 2 } { 9 } (828255) π( 82 \sqrt { 82 } - 5 \sqrt { 5 } ) \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions