Solved

Use the Chain Rule to Find zs\frac { \partial z } { \partial s }

Question 115

Multiple Choice

Use the Chain Rule to find zs\frac { \partial z } { \partial s } . z=eycos(θ) ,r=8st,θ=s2+t2z = e ^ { y } \cos ( \theta ) , r = 8 s t , \theta = \sqrt { s ^ { 2 } + t ^ { 2 } }


A) zs=eγ(8tcos(θ) ssin(θ) s2+t2) \frac { \partial z } { \partial s } = e ^ { \gamma } \left( 8 t \cos ( \theta ) - \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } + t ^ { 2 } } } \right)
B) zs=eγ(8tcos(θ) +ssin(θ) s2t2) \frac { \partial z } { \partial s } = e ^ { \gamma } \left( 8 t \cos ( \theta ) + \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } - t ^ { 2 } } } \right)
C) zs=(8tcos(θ) +seγsin(θ) s2+t2) \frac { \partial z } { \partial s } = \left( 8 t \cos ( \theta ) + \frac { s e ^ { \gamma } \sin ( \theta ) } { \sqrt { s ^ { 2 } + t ^ { 2 } } } \right)
D) zs=eγ(cos(θ) +ssin(θ) s2t2) \frac { \partial z } { \partial s } = e ^ { \gamma } \left( \cos ( \theta ) + \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } - t ^ { 2 } } } \right)
E) zs=eγ(tcos(θ) ssin(θ) s2+t) \frac { \partial z } { \partial s } = e ^ { \gamma } \left( t \cos ( \theta ) - \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } + t } } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions