Solved

Write an Integral Giving the Area of the Surface Obtained 4x\frac{4}{x}

Question 1

Multiple Choice

Write an integral giving the area of the surface obtained by revolving the curve about the x-axis. (Do not evaluate the integral.) y = 4x\frac{4}{x} on [3, 6]


A) (  Write an integral giving the area of the surface obtained by revolving the curve about the x-axis. (Do not evaluate the integral.)  y =  \frac{4}{x}  on [3, 6] A)  (<font face= symbol ></font>  )  B)  8<font face= symbol ></font>  \int_{3}^{6} x^{3} \sqrt{x^{4}+16} d x  C)  8<font face= symbol ></font>  \int_{3}^{6} \frac{\sqrt{x^{4}+16}}{x^{3}} d x  D)  (<font face= symbol ></font>  \int_{3}^{6} \frac{4}{x}\left(1+\left(-\frac{4}{x^{2}}\right) ^{2}\right)  d x  )  )
B) 8 36x3x4+16dx\int_{3}^{6} x^{3} \sqrt{x^{4}+16} d x
C) 8 36x4+16x3dx\int_{3}^{6} \frac{\sqrt{x^{4}+16}}{x^{3}} d x
D) ( 364x(1+(4x2) 2) dx\int_{3}^{6} \frac{4}{x}\left(1+\left(-\frac{4}{x^{2}}\right) ^{2}\right) d x )

Correct Answer:

verifed

Verified

Related Questions