Solved

Find a Unit Vector Orthogonal to Both of the Vectors {1,1,0}\{ 1 , - 1,0 \}

Question 116

Multiple Choice

Find a unit vector orthogonal to both of the vectors {1,1,0}\{ 1 , - 1,0 \} and {1,2,3}\{ 1,2,3 \} .


A) (13,13,13) \left( \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } \right)
B) (13,13,13) \left( - \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } \right)
C) (13,13,13) \left( \frac { 1 } { \sqrt { 3 } } , - \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } \right)
D) (13,13,13) \left( \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } , - \frac { 1 } { \sqrt { 3 } } \right)
E) 23,23,13}\left\langle \frac { 2 } { 3 } , \frac { 2 } { 3 } , \frac { 1 } { 3 } \right\}
F) (23,23,13) \left( - \frac { 2 } { 3 } , \frac { 2 } { 3 } , \frac { 1 } { 3 } \right)
G) (23,23,13) \left( \frac { 2 } { 3 } , - \frac { 2 } { 3 } , \frac { 1 } { 3 } \right)
H) (23,23,13) \left( \frac { 2 } { 3 } , \frac { 2 } { 3 } , - \frac { 1 } { 3 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions