Solved

Which One of the Following Series Is Divergent?
A) n=1(23)n\sum _ { n = 1 } ^ { \infty } \left( \frac { 2 } { 3 } \right) ^ { n }

Question 134

Multiple Choice

Which one of the following series is divergent?


A) n=1(23) n\sum _ { n = 1 } ^ { \infty } \left( \frac { 2 } { 3 } \right) ^ { n }
B) n=11n2+1\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 2 } + 1 }
C) n=11n5n\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n 5 ^ { n } }
D) n=2nn21\sum _ { n = 2 } ^ { \infty } \frac { n } { n ^ { 2 } - 1 }
E) n=1n3n5+2\sum _ { n = 1 } ^ { \infty } \frac { n ^ { 3 } } { n ^ { 5 } + 2 }
F) n=12nn!\sum _ { n = 1 } ^ { \infty } \frac { 2 ^ { n } } { n ! }
G) n=1πn2\sum _ { n = 1 } ^ { \infty } \frac { \pi } { n ^ { 2 } }
H) n=1(1) n1πn\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } \frac { \pi } { n }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions