Solved

Examine the Two Series Below for Absolute Convergence (A), Convergence n=1(1)n1n+1ln(n+1)\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } \frac { n + 1 } { \ln ( n + 1 ) }

Question 12

Multiple Choice

Examine the two series below for absolute convergence (A) , convergence that is not absolute (C) , or divergence (D) .
1) n=1(1) n1n+1ln(n+1) \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } \frac { n + 1 } { \ln ( n + 1 ) }
2) n=1(1) n1ln(n+1) n+1\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } \frac { \ln ( n + 1 ) } { n + 1 }


A) 1A, 2A
B) 1A, 2C
C) 1A, 2D
D) 1C, 2A
E) 1C, 2C
F) 1C, 2D
G) 1D, 2A
H) 1D, 2C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions